O.P.Code: 20ME0315

solid surface.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular & Supplementary Examinations February-2024
HEAT AND MASS TRANSFER

		HEAT AND MASS TRANSFER			
Ti	me	(Mechanical Engineering) : 3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	1110021	WIGHT	13. 00
		UNIT-I			
1	a	List the basic laws which govern the heat transfer.	CO ₁	L1	6M
	b		CO1	L2	6M
		OR			
2	a	What is conduction heat transfer? Explain.	CO1	L2	6M
	b	A 150 mm thick plane wall having cross sectional area 0f 5 m ² . If its	CO1	L3	6M
		conductivity is 9 W/m °C and its surface temperature are steady at			
		150°C and 45°C, determine i). Heat transfer across the plane wall,			
		ii).Temperature gradient in the flow direction.			
		UNIT-II			
3	a	Derive an expression for heat conduction through a composite wall.	CO ₂	L3	6M
	b	A spherical shaped vessel of 1.5 m diameter is 70 mm thick. Find the	CO ₂	L3	6M
		rate of heat leakage, if the temperature difference between the inner and			
		outer surface is 200°C. Thermal conductivity of the material of the			
		sphere is 0.080 W/m °C			
		OR	~~^		43. -
4	a	Write short note on transient heat conduction.	CO2	L1	6M
	b		CO ₂	L3	6M
		quenching it in an oil bath maintained at 20 °C. Determine the time			
		required for the temperature to reach 595 °C at a depth of 12 mm. The ingot may be approximated as a flat plate. For steel ingot take the			
		thermal diffusivity as 1.2×10^{-5} m ² /s.			
		UNIT-III			
5		Explain hydrodynamic and thermal boundary layer with reference to	C03	L2	12M
3		flow over flat plate.	CUS		12111
		OR			
6		In a straight tube of 60 mm diameter, water is flowing at a velocity of 12	C03	L4	12M
		m/s. The tube surface temperature is maintained at 70 °C and the			
		following water is heated from the inlet temperature 15 °C to an outlet			
		temperature of 45 °C. taking the physical properties of water at its mean			
		bulk temperature, Calculate the following:			
		i. The heat transfer coefficient from the tube surface to the water			
		ii. The heat transferred iii. The length of the tube			
		UNIT-IV			
7	a	Deduce the correlation in boiling with proper expression.	C04	L4	6M
	b	Discuss the different types of processes for condensation of vapours on a	C04	L1	6 M
		1.1			

8	a	Define Radiation heat transfer.	C04	L1	6M
	b	Define the term absorptivity, reflectivity and transmittivity of radiation.	C04	L2	6M
		UNIT-V			
9		Which of the arrangement of heat exchangers is better,	C05	L2	12M
		(i) parallel flow,(ii)Counter flow. Explain with neat sketches.			
		OR			
10	a	Discuss about the modes of Mass transfer.	C06	L2	6M
	b	What is Mass transfer coefficient? Explain it briefly.	C 06	L2	6M
		*** FND ***			

